RESEARCH ARTICLE

DYNAMICS OF INFLAMMATORY AND ORGANIC CHANGES IN PATIENTS WITH SEPSIS UNDER PARENTERAL NUTRITION WITH SPECIALIZED AMINO ACIDS

Muralimova Ranogul

Senior teacher - Department of Anaesthesiology and Reanimatology, Tashkent Medical Academy, Tashkent, Uzbekistan

Islomjonova Asmo

Student - Tashkent Medical Academy, Tashkent, Uzbekistan

Abstract: The objective of the study is to assess the dynamics of inflammatory and organ indicators in patients with sepsis using specialized parenteral nutrition including amino acids. The analysis was conducted based on levels of inflammatory markers (C-reactive protein, fibrinogen, ESR), organ dysfunction (APACHE II and SOFA scores), and treatment effectiveness. Results indicate that the inclusion of specialized amino acids contributes to an earlier reduction in inflammation markers and severity of the condition.

Key words: Sepsis, parenteral nutrition, amino acids, C-reactive protein, organ failure, APACHE II, SOFA.

INTRODUCTION

Sepsis remains one of the most significant challenges in modern medicine, characterized by high mortality rates exceeding 30% in severe cases. The primary goals of treatment are to address organ failure, reduce systemic inflammation, and maintain metabolic balance in patients.

One modern approach involves the use of specialized parenteral nutrition containing amino acids. Specifically, glutamine and arginine, as key pharmaconutrients, support immune system function, regulate the inflammatory response, and enhance protein synthesis. This study examines the impact of specialized nutrition on inflammatory and organ indicators in sepsis patients.

METHODS

The study was conducted in an intensive care unit from 2022 to 2024. A total of 92 patients were included, divided into two

groups: Group A, consisting of 46 patients receiving standard parenteral nutrition with the addition of specialized amino acids (glutamine and arginine), and Group B, consisting of 46 patients receiving standard parenteral nutrition. Inclusion criteria: ages 18 to 65, severe sepsis or septic shock. Patients with terminal-stage organ failure and contraindications to nutritional support were excluded.

The dynamics of inflammatory markers (Creactive protein, fibrinogen, ESR), organ dysfunction (APACHE II, SOFA scores), and metabolic parameters were assessed. Statistical analysis was performed using SPSS v.25, with a significance level of p<0.05.

RESULTS

1. Dynamics of Inflammatory Markers:

The level of C-reactive protein (CRP), indicating the intensity of the inflammatory response, was significantly reduced in

RESEARCH ARTICLE

Group A. On day 1, CRP levels in Group A were 122.2 ± 14.6 mg/L, compared to 127.5 ± 25.8 mg/L in Group B. By day 7, CRP in Group A decreased to 89.95 ± 19.2 mg/L,

while in Group B, this reduction was observed only by day 10, at 78.72 ± 21.2 mg/L.

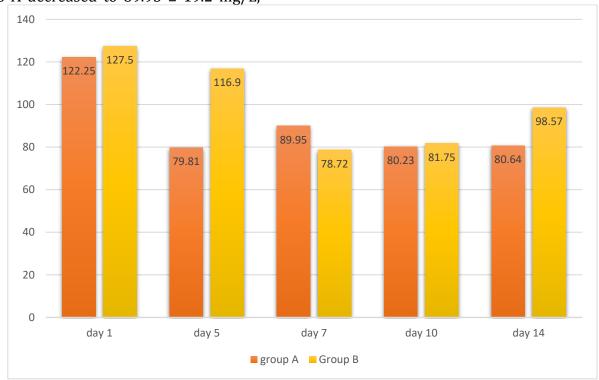


Figure 1. Dynamics of C-reactive protein levels in patients from groups A and B

In both groups, there was a general trend toward reduced inflammatory markers such as leukocytosis, neutrophilic left shift, leukocyte intoxication index, and erythrocyte sedimentation rate (ESR). However, in patients receiving specialized amino acids, reductions in neutrophilic leukocytes occurred significantly faster,

indicating a more pronounced positive trend in inflammation resolution.

Fibrinogen, a marker of coagulation and inflammation, decreased more actively in Group A. On day 10, fibrinogen levels were 4.08 ± 0.56 g/L in Group A compared to 5.21 ± 0.49 g/L in Group B (p=0.04).

To allo by tob	occurre		irrearrery	rabter,							
Indicat	Group A					Group B					
or (Normal)	Days of Observation										
	1	5	7	1	1	1	5	7		14	
				0	4				0		
C-	122,25	79,81	89,95	80,23	80,64	127,5	11	7		98	
reactive	±14,64	±16,95	±19,2	±19,9	±23,1	±25,8	$6,9 \pm 51,2$	8,72	1,75	,57 ±50,3	
protein (up to								±21,2	±60		
5 mg/L)									,7		
Fibrino	5,34	5,33	5	4,08	4,71	5,2	5,2	5		4,49	
gen (2-4 g/L)	± 0.34	±0,28	,03	±0,56*	± 0.05	±0,38	$5\pm0,42$,09	,21	±0,58	
			±0,42					$\pm 0,43$	±0,		
									49		

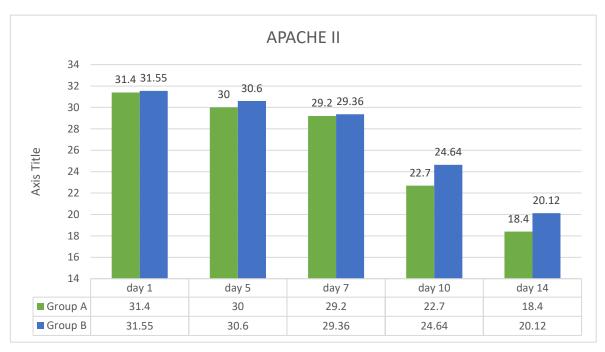
eISSN: 2156-5198 pISSN: 2156-518X

RESEARCH ARTICLE

ESR	4	4	Δ	4	4	46,	46,	4		45
(M: 2-10	7,55	7,30	6,42	5,21	4,5	26 ± 3.6	35 ±4,17	5,06	4,81	,06 ±2,56
mm/h; F: 2-15	±3,36	±2,87	±2,90	±2,76	±3,36	20 ±3,0	33 ±4,17	±4,34	±4,	,00 ±2,50
mm/h)	±3,30	±∠,67	±2,90	$\pm 2,70$	±3,30			±4,54	01	
		_							01	
Leukoc	1	1	1	9	9	11,	10,	1		9,
ytes (4-	1,45	0,44	0,33	,66 ±	,98	25 ± 0.93	$4 \pm 0,55$	0,45	,96	21 ± 0.87
9\u00d710\u2	$\pm 1,18$	± 0.88	$\pm 1,04$	0,98	$\pm 0,59$			$\pm 0,51$	±0,	
079/L)									99	
Neutro	1	1	1	1	1	15,	13,	1		10
phils (1-6%)	5,71	3,08	3,09	1,97	2,04	$38 \pm 1,23$	$17 \pm 1,37$	2,03	2,62	,74
	±1,42	±0,92	± 0.71	±0,01*	±1,03	,	,	±1,26	±1,	±1,22**
	,	,-	,,	,,-	,				19	,
LII (up	4	2	2	1	1	3,1	2,7	1		2,
to 1.5)	,56	,68	,0	,9	,86	3 ± 0.82	$5\pm0,27$,88	,27	03 ±
,	±1,82	± 0.67	± 0.35	$\pm 0,32$	$\pm 0,45$,	ĺ	±0,39	±0,	
	,-	-,	- ,	- ,-	-, -			- ,	51	
Serum	3	3	3	7	8	3,8	2,4	2		7,
Iron (11.6-	,74	,54	,97	,82	,15	8 ±0,91	5 ±0,35	,85	,1	3 ± 0.92
30.4	±0,46	±1,08	±1,13	±2,42	±0,65*		,	±0,95	±0,	,-
\u00b5mol/L)	_==,10	,00		, .2	_==,55			_==,,,,	84	
(doobsillol/L)	l						l	l .	UT	

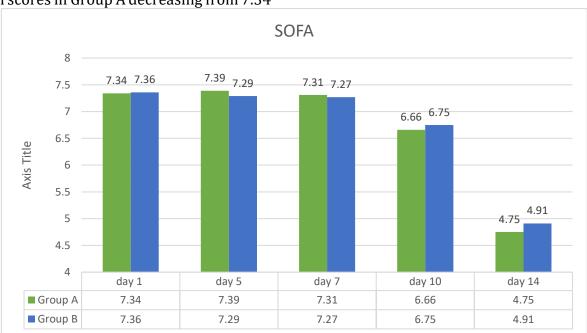
(Table 1.1 reflects the dynamics of key inflammatory markers in Groups A and B over 14 days of observation.)

2. Organ Dysfunction:


During treatment, Group A exhibited a clear trend toward reductions in both overall severity and the extent of multiple organ dysfunctions. This indicates a faster and more pronounced improvement in clinical conditions for patients receiving specialized amino acids. In Group B, while there were

no statistically significant differences, the dynamics of improvement were less evident.

By day 7 and 14, there was a slight but consistent decrease in total scores on the APACHE II and SOFA scales in Group B, reflecting some improvement, albeit without significant differences from baseline scores.


• APACHE II: The average score in Group A decreased from 31.4 ± 0.69 to 18.4 ± 0.54 by day 14. In Group B, the reduction was less pronounced, from 31.55 ± 0.67 to 20.12 ± 0.62 .

RESEARCH ARTICLE

 \pm 2.2 to 4.75 \pm 1.6, compared to 7.36 \pm 2.5 to 4.91 \pm 1.8 in Group B.

• SOFA: A similar trend was observed, with scores in Group A decreasing from 7.34

2.1 Dynamics of Organ Dysfunction in Groups A and B:

2.1.1 Respiratory Failure:

Upon enrollment, 22% of patients in Group A and 20.4% in Group B required mechanical ventilation. In Group B, two

additional patients required respiratory support due to worsening respiratory failure. The average duration of mechanical ventilation was one day shorter in Group A (10.88 ± 9.17 days) compared to Group B (11.83 ± 8.66 days).

2.1.2 Acute Cardiovascular Failure:

RESEARCH ARTICLE

Nutritional support was contraindicated for patients requiring high doses of cardiotonic drugs to stabilize hemodynamics. These patients were excluded from the study.

Clinical Outcomes:

The average length of ICU stay was 12.3 ± 3.8 days in Group A and 14.7 ± 4.2 days in Group B (p=0.05). Mortality in Group A was 14%, 5% lower than in Group B.

DISCUSSION

The results confirm that the inclusion of specialized amino acids in parenteral nutrition facilitates an earlier reduction in inflammatory markers and improvement in organ dysfunction indicators. This aligns with existing literature highlighting glutamine and arginine as critical nutrients for modulating the inflammatory response in sepsis.

CONCLUSION

Adding specialized amino acids to parenteral nutrition for sepsis patients contributes to earlier reductions in inflammation, improved organ indicators, and shorter hospital stays.

REFERENCES

- **1.** Abdelhamid YA, Cousins CE, Sim JA, Bellon MS, Nguyen NQ, Horowitz M, et al. Effect of critical illness on triglyceride absorption. J Parenter Enteral Nutr 2015; 39:966-982.
- **2.** Abraham E. New definitions for sepsis and septic shock: continuing evolution but with much still to be done. JAMA. 2016;3I5(8): 757-759.
- 3. Al-Dorzi HM, Albarrak A, Ferwana M, Murad MH, Arabi YM. Lower versus higher dose of enteral caloric intake in adult critically ill patients: a systematic review and meta-analysis. Crit Care 2016; 20:358.
- **4.** Alramly MK, Abdalrahim MS, Khalil A. Validation of the modified NUTRIC score

- on critically ill Jordanian patients: A retrospective study. Nutr Health. 2020 Sep;26(3):225-229.
- 5. Arabi YM, Al-Dorzi HM, Mehta S, Tamim HM, Haddad SH, Jones G, mcintyre L, Solaiman O, Sakkijha MH, Sadat M, Afesh L, Kumar A, Bag-shaw SM, Aldawood AS; permit Trial Group. Association of protein intake with the outcomes of critically ill patients: a post hoc analysis of the permit trial. The American Journal of Clinical Nutrition. 2018;108(5):988-996.
- **6.** Arabi YM, Preiser JC. A critical view on primary and secondary outcome measures in nutrition trials. Intensive Care Med 201743:1875-1877.
- Ashurova G.Z., Satvaldiyeva E.A., Mamatqulov I.B., Tolipov M.G., Murtozayev S.B. Bolalar sepsisida oqsilenergiya yetishmovchiligini nutritiv davolash Pediatria 4 2022 c.225-229
- **8.** Bear DE, Smith E, Barrett NA. Nutrition Support in Adult Patients Receiving Extracorporeal Membrane Oxygenation. Nutrition in Clinical Practice. 2018;33(6):738-746.
- **9.** Bendavid, I.; Zusman, O.; Kagan, I.; Theilla, M.; Cohen, J.; Singer, P. Early Administration of Protein in Critically Ill Patients: A Retrospective Cohort Study. Nutrients 2019, 11, 106.
- **10.**Berger MM, Reintam-Blaser A, Calder PC, Casaer C, Hiesmayr M, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr 2018 Jul 20.
- **11.**Bousie E, van Bickland D, Lammers HJ, van Zanten AR. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur J Clin Nutr 2016; 70:1443e50.
- **12.**Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017;36(1):49-NUT64.

eISSN: 2156-5198 pISSN: 2156-518X

RESEARCH ARTICLE

- **13.**Cederholm T, Jensen GL, Correia I, Gonzales MC, Fukushima R, Higashiguchi T, et al. The GLIM criteria for the diagnosis of malnutrition- a consensus report from the global clinical nutrition community. Clin Nutr 2019; 38:1-9.
- **14.**Chowdhury AH, Murray K, Hoad CL, Costigan C, Marciani L, Macdonald IA, et al. Effects of bolus and continuous nasogastric feeding on gastric emptying, small bowel water content, superior mesenteric artery blood flow, and plasma hormone concentrations in healthy adults: a randomized crossover study. Ann Surg 2016; 263:450e7.
- **15.**Compher C, Chittams J, Sammarco T, Nicolo M, Heyland DK. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a patient multicenter, multinational observational study. Crit Care Med 2017; 45:156-163.
- **16.** Dai YJ, Sun LL, Li MY, Ding CL, Su YC, Sun LJ, et al. Comparison of formulas based on lipid emulsions of olive oil, soybean oil, or several oils for parenteral nutrition: a systematic review and metaanalysis. Adv Nutr 2016;15(7): 279e86.
- 17. Dickerson RN, Buckley CT. Impact of Propofol Sedation upon Caloric Overfeeding and Protein Inadequacy in Critically Ill Patients Receiving Nutrition Support. Pharmacy. 2021;9(3):121.
- 18. Doig G, Simpson F, Heighes PT, Bellomo R, Chesher D, Caterson ID, et al. Refeeding Syndrome Trial Investigators Group: restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: a randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir Med 2015; 3:943-952.

- **19.** Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev 2018;(3).
- 20. Donnino M.W., Andersen L.W., Chase M. Randomized Double-blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study // Crit. Care Med. 2016. Vol. 44, issue 2. P. 360-367.
- **21.** Dunser M., Hjortrup P.B., Pettila V. Vasopressors in shock: are we meeting our target and do we really understand what we are aiming at? //Intensive Care Med. 2016. Vol. 42, issue 7. P. 1176-1178.
- **22.** Elisabeth De Waele, Manu L.N.G. Malbrain Nutrition in Sepsis: A Benchto-Bedside Review 2020, 12, 395;
- 23. Elke G, van Zanten ARH, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 2016; 20:117.
- **24.** Engelheart S., Andr D., D. Repsilber et al. Nutritional status in older people an explorative analysis Published by Elsevier Volume 46, 2021, Pages 424-433
- **25.** Engelheart S, Brummer R. Assessment of nutritional status in the elderly: a proposed function-driven model. Food Nutr Res 2018;62.
- **26.**Eshesen T.G., Wetterslev M., Perner A Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness // Intensive Care Med. 2016. Vol. 42, issue 3. P. 324-332.
- **27.**Espina,S; Gonzalez-Irazabal,. et al. Amino Acid Profile in Malnourished Patients with Liver Cirrhosis and Its

International Journal of Modern Medicine VOLUME04 ISSUE01 PUBLISHED DATE: - 14-01-2025

Page 1-7

DOI: https://doi.org/10.55640/ijmm-04-01-01 eISSN: 2156-5198 pISSN: 2156-518X

RESEARCH ARTICLE

Modification with Oral Nutritional Supplements: Implications on Minimal Hepatic Encephalopathy. Nutrients 2021, 13, 3764.

- 28. Evans L. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 Intensive Care Medicine volume 47, pages 1181–1247 (2021)
- **29.** Fan M, Wang Q, Fang W, Jiang Y, Li L, Sun P, et al. Early enteral combined with parenteral nutrition treatment for severe traumatic brain injury: effects on immune function, nutritional status and

- outcomes. Chin Med Sci J 2016; 31:213e20.
- **30.** Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. J Parenter Enteral Nutr 2016; 40:795-805.
- **31.** Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.